
 1

 2

Vue.js Succinctly

By

Author Ed Freitas

Foreword by Daniel Jebaraj

 3

Copyright © 2019 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: Courtney Wright

Acquisitions Coordinator and Proofreader: Tres Watkins, content development manager,

Syncfusion, Inc.

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

 4

Table of Contents

The Story behind the Succinctly Series of Books .. 6

About the Author ... 8

Acknowledgements ... 9

Introduction ...10

Chapter 1 Setup ...11

Project overview ...11

Installation ..12

Creating an app (CLI) ...13

Creating an app (Vue UI) ..15

Project dashboard: Vue Project Manager ...18

Summary ..24

Chapter 2 App Basics ..25

Quick intro ..25

Editor ..25

Default project structure ...25

Index.html, main.js, and App.vue ..28

The HelloWorld component ..33

App component structure ...38

Vue’s data within components ..40

Docs component ..42

Vue DevTools ...44

Getting the data into the Docs component ..45

Summary ..49

Chapter 3 Expanding the App: UI ...50

 5

Quick intro ..50

Item.vue ...50

Vuetify ..53

Styling App.vue ..54

Styling Docs.vue ...57

Styling Item.vue ..58

Creating Doc.vue ..60

Adapting App.vue for Doc.vue ..69

Adapting Docs.vue for Doc.vue ..72

Adapting Item.vue for Doc.vue ...73

Adjustments to Doc.vue ..79

Summary ..85

Chapter 4 Finalizing the App: Database ...86

Quick intro ..86

Sheetsu dashboard ..86

Dynamic data loading ...88

Deleting documents ..91

Saving new or existing documents ...94

Project source code .. 100

Closing comments .. 101

 6

The Story behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about every other
week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

S

 7

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

 8

About the Author

Ed Freitas is a consultant on Software Development applied to Customer Success, mostly
related to Financial Process Automation, Accounts Payable Processing, and Data Extraction.

He really likes technology and enjoys playing soccer, running, traveling, life-hacking, learning,

and spending time with his family.

You can reach him at: https://edfreitas.me.

https://edfreitas.me/

 9

Acknowledgements

Many thanks to all the people from the amazing Syncfusion team who contributed to this book
and helped it become a reality—especially Jacqueline Bieringer, Tres Watkins, Darren West,
and Graham High.

The Manuscript Managers and Technical Editor thoroughly reviewed the book's organization,

code quality, and overall accuracy—Darren West from Syncfusion and James McCaffrey from

Microsoft Research. Thank you all.

This book is dedicated to Mi Chelin, Lala, and Tita, who inspire me every day and light up my

path ahead—God bless you all, always.

http://www.syncfusion.com/
https://jamesmccaffrey.wordpress.com/
https://www.microsoft.com/en-us/research/people/jammc/

 10

Introduction

Vue.js—commonly referred to as Vue and pronounced like view—is an open-source JavaScript

framework for building user interfaces and single-page applications using JavaScript, HTML,

and CSS.

Vue was created by Evan You after he worked for Google using Angular for various projects.

His idea was to use the parts of Angular that he really liked, and build something that was very

easy to use and lightweight, yet would still have many of the amazing parts and power of

Angular.

Vue uses an HTML-based template syntax that allows reactive data binding to the DOM and

can extend basic HTML elements as reusable components. It also provides support for front-

end hashed routing though the open-source Vue Router package.

Given its simplicity and powerful set of features, developers have flocked to the framework,

making Vue one of the top current trending projects on GitHub, and one of the world’s top

JavaScript frameworks (at the time of writing of this book) with no signs of slowing down.

If current trends continue, Vue is on the path to become the world's most popular JavaScript

framework as developer adoption steadily increases.

Aside from its awesome productivity features, Vue’s success is closely tied with JavaScript’s

ascension as the go-to language for developing modern web applications—as logic that used to

run on a web server can now be executed in a browser.

Vue is also a progressive framework, which means that if you already have an existing web

application, you can just plug Vue into one of its parts—which might need a dynamic and more

interactive user experience. Vue has excellent performance characteristics.

Vue can also be used when starting an application from scratch—when you want to add more

business logic into your frontend, rather than the backend. It has a rich ecosystem of packages

that provide great core features, and others that manage state and handle routing.

Vue allows applications to easily scale by supporting reusable components out of the box—

each having its own HTML, CSS, and JavaScript. This means that an application can be split

into smaller functional parts, which can be reused.

All these features make Vue a great choice for developing frontend applications, and a great

framework to learn—which as a developer, will make you more productive and valuable in the

market.

So, without further ado, let’s get started with Vue.

https://vuejs.org/
https://evanyou.me/
https://angular.io/
https://router.vuejs.org/
https://github.com/trending

 11

Chapter 1 Setup

Project overview

The application that we’ll be building throughout this book will be a web app that we can use to

keep track of important personal documents that have an expiration date, such as passports,

driver’s licenses, or credit cards.

This is the same app concept that was explored within Flutter Succinctly—with the difference

that before, we created an Android application using Flutter, and now, we’ll create a web app

using Vue. Below is what the Flutter app concept looks like.

Figure 1-a: The Mobile Version of the Demo App (Flutter)

We’ll use Vue to re-create this same concept, but instead of giving it the same mobile app look

and feel, we’ll create a web app with similar functionality.

Sounds awesome—let’s get our engines ready, so we can start setting up our development

environment.

https://flutter.dev/

 12

Installation

The Vue CLI (command-line interface) requires NPM (Node Package Manager), which needs

Node.js to be installed. To install Node.js, simply go to the Node.js website and download the

LTS (Long Term Support) or the latest Current version.

Figure 1-b: Node.js Website

The installation of Node.js is very simple and consists of a few steps that can easily be carried

out using an installation step-by-step wizard.

Figure 1-c: Node.js Installation Wizard

https://www.npmjs.com/
https://nodejs.org/

 13

Once Node.js has been installed, we need to install the Vue CLI globally on our system—we

can do this by opening the command line or terminal and typing in the following command.

Listing 1-a: Install Vue CLI Command

npm install -g @vue/cli

Once installed, you can run the following command to check which version of the CLI was

installed on your machine.

Listing 1-b: Check Vue CLI Version

vue --version

With the Vue CLI installed, we are ready to create an application.

Creating an app (CLI)

There are two ways to create an application with Vue: one is using the Vue CLI, and the other is

using the Vue UI tool. Let’s explore both ways.

Open the command line and type in the following command—this will require us to choose a

preset.

Listing 1-c: Creating a Vue App with the Vue CLI

vue create test

In my case, I’ve chosen the default preset, which includes babel and eslint.

Figure 1-d: Choosing a Preset

Once selected, the CLI installs the required modules—we can see this as follows.

Figure 1-e: CLI Installing Modules

 14

After the process has finished, you’ll see the following information—which describes the

commands to run the application we just created.

Figure 1-f: App Creation Finalized

Let’s go ahead and test that out. I’ll enter the following commands on the command line.

Listing 1-d: Running the Created App

cd test

npm run serve

This fires up a local development server that supports hot-reloading, which can be found on the

following addresses.

Figure 1-g: App Running CLI Message

Let’s open a browser instance and point it to the local address indicated—in my case:

http://localhost:8080.

I then see the following welcome screen on my browser window.

Figure 1-h: App Running on the Browser

 15

Cool—we now have the basic Vue demo application running. Now let’s explore how we can

create the same application but using the Vue UI.

Creating an app (Vue UI)

Before we can create the demo app with the Vue UI, we have some cleaning up to do. So, close

the browser where the app is running, then within the command line, press Ctrl+C to interrupt

the dev server—this will show the following message.

Figure 1-i: Interrupting the Dev Server

Then, type Y (uppercase or lowercase) and press Enter to stop the dev server. Once done,

remove all the files and subfolders contained within the test folder that the Vue CLI created.

We are now ready to create the app with the Vue UI tool. To do that, let’s go back to the

command line and enter the following command.

Listing 1-e: Starting Vue UI

vue ui

This will start and open the Vue UI interface on your browser—in my case on the following URL:

http://localhost:8000/project/select.

Here’s how the Vue UI looks.

Figure 1-j: Vue UI (Vue Project Manager)

 16

Awesome! Next, let’s click Create, which is just next to the Projects button.

Figure 1-k: Vue UI (Vue Project Manager) after Clicking the Create Button

The Vue Project Manager shows the folder path where the application can be created. This is

the same folder path where the vue ui command was executed from.

So, to create the application, let’s click + Create a new project here. Once we’ve done that,

we’ll see the following screen.

Figure 1-l: Vue Project Manager: Creating a New Project (Step 1)

 17

I’ve set the Project folder value to test and the Package Manager to npm, and disabled the

Git repository option—you can choose other options if you wish. Once you’re done, click

Next—this will take us to the final creation screen, which we can see as follows.

Figure 1-m: Vue Project Manager: Creating a New Project (Step 2)

In this step, we will choose the combination of plugins and configurations to use—this is known

as a preset. In my case, I’ve chosen the Default preset, which uses babel and eslint. You may

choose another option if you wish. Once you’re done, click Create Project—this will display the

following screen.

 18

Figure 1-n: Vue Project Manager: New Project Being Created

Once the project has been created, the Vue Project Manager will present a Project dashboard

for the project that was just created—which is what we’ll explore next.

Project dashboard: Vue Project Manager

One of the great features about the Vue Project Manager is the ability it gives us to manage

multiple Vue projects via a clear and easy-to-use interface. Let’s explore the options it provides

us for managing the test project we’ve just created.

The main screen of the Project dashboard is a welcome screen, which by default, contains the

Welcome tips and Kill port widgets.

Figure 1-o: Project Dashboard Main Screen

This screen is customizable—you can use it to add or remove widgets.

 19

Figure 1-p: Project Dashboard: Main Screen (After clicking the Customize button)

Click Customize, and you will be presented the option to add widgets or remove any of the

existing ones.

In my case, I’m going to add the Run task widget, which I would like to use to run a serve

task—which will basically allow me to serve (run) my test application from the Vue Project

Manager UI, without having to use the command line.

Once you’ve added the Run task widget, click Configure widget as shown in the following

figure.

Figure 1-q: Project Dashboard: Main Screen (After adding the Run task widget)

Next, we’ll see the following screen, which we can use to select the task we would like to

execute.

Figure 1-r: Project Dashboard: Run task widget (After adding the Configure widget)

 20

In my case, I’ve chosen the serve task option. Once you have chosen the task, click Save. After

that, the Project dashboard screen will look as follows.

Figure 1-s: Project Dashboard: Run task widget (After the changes)

Notice how the Run task widget has changed, and the serve option has been populated and

configured. This can be initiated by clicking Run task.

Let’s explore some of the other options available on the Project dashboard. The next option we

have available is the Project plugins screen. Here we can see what plugins our project will use.

Figure 1-t: Project Dashboard: Project plugins

Notice that based on the default preset option that I chose when the test application was

created, the following plugins were installed:

• @vue/cli-service (version 3.8.0)

• @vue/cli-plugin-babel (versión 3.8.0)

• @vue/cli-plugin-eslint (versión 3.8.0)

There’s also the option to add additional plugins—let’s click + Add plugin, just to explore which

other plugins are available.

 21

Figure 1-u: Project Dashboard: Other plugins

This is a full list of all the available public published plugins that exist for Vue—basically, Vue’s

ecosystem of plugins.

There’s also the option to use local plugins, by clicking on the Browse local plugin button. Now,

let’s have a look at the Project dependencies screen.

There are two types of project dependencies: main dependencies and development

dependencies.

Main dependencies are those that are required for the execution of the test application—they

are needed for the runtime execution of the app.

Development dependencies are required during the development of the application. Once the

application is linted (compiled) and served, these dependencies are not essential for the

application to run—they are only needed during development.

Figure 1-v: Project Dashboard: Project dependencies

 22

There’s also the option to install additional dependencies, either main dependencies or

development dependencies, which are publicly available and published on the NPM registry.

The following figure shows the list of available dependencies visible after clicking + Install

dependency.

Figure 1-w: Project Dashboard: Install dependencies

The Project dashboard also gives us the possibility to easily configure the plugins installed. This

can be done on the Project configuration screen, where each plugin that has configuration

options is displayed.

The following figure shows the configuration options for the Vue CLI plugin. Being able to set

the options of plugins using a UI such as this is much easier than having to use JSON files or

the command line—this is one of the advantages of using the Vue UI.

Figure 1-x: Project Dashboard: Vue CLI Plugin Options

 23

The last screen of the Project dashboard is the Project tasks screen. Here’s where we can

serve, build, lint, and inspect our application when it is running.

The Project tasks screen is not only useful for executing the serve, build, lint, and inspect tasks,

but it’s incredibly valuable given that we can keep track of how the application is running and

performing—this is visible through the Output, Dashboard, and Analyzer tabs—which we can

see as follows.

Figure 1-y: Project Dashboard: Project tasks

Notice how we have the option to execute the task by clicking the Run task button, and then

monitoring what happens by looking at the Dashboard, which is specific to the task being

executed. This feature is not only cool, but extremely powerful—it gives us real-time details of

the task running.

The following figure shows how the Dashboard looks a few seconds after the serve task has

been executed—notice the speed stats and general status of our running application.

 24

Figure 1-z: Project Dashboard: Serve task execution details

As we have seen, the Vue UI is a very powerful tool that makes the development of our

application easier to manage and analyze.

I tend to prefer the Vue UI method for creating apps, but this is mostly a matter of personal

taste. Feel free to choose your own method.

Summary

Throughout this chapter, we’ve explored how to get a Vue environment set up and ready. We’ve

been able to do this by installing the necessary requirements and then setting up a test

application using both the Vue CLI and the Vue UI.

Next, we’ll explore the default project structure and start modifying the test app and lay the

foundation for the application we will be building throughout this book.

 25

Chapter 2 App Basics

Quick intro

With our Vue environment set up, we are now ready to start inspecting our test application and

modifying it—which is what we will do in this chapter. Let’s dive in.

Editor

I’ll be using Visual Studio Code (also known as VS Code) on Windows as my editor and

Integrated Development Environment (IDE) of choice throughout this book—as it is easy to use

and has great features. However, feel free to use any other editor you feel comfortable with.

If you decide to go with VS Code, I suggest you install the Vetur extension, which provides Vue

tooling for VS Code—as we can see in the following figure.

Figure 2-a: The Vetur Extension for VS Code Installed

With VS Code set up, let’s explore the default project and file structure created by the Vue CLI

or Vue UI.

Default project structure

By default, the application project structure created by the Vue CLI or Vue UI contains three

main folders:

• node_modules: The repository of node modules that the application will use during

development and runtime.

• public: Contains the resultant files that can be deployed to a web server once the Vue

app has been built.

• src: Contains the source files that we will be working on.

https://code.visualstudio.com/
https://vuejs.github.io/vetur

 26

Let’s open VS Code and explore the folder structure of the test application we created—this is

how it looks:

Figure 2-b: The Default Project Folder Structure

Notice that the src folder contains two subfolders: assets and components. There’s also an

App.vue file in the root of the src folder, which is the application’s main component and entry

point.

The assets subfolder, as its name implies, is where our application’s static assets will reside,

such as logos, images, and anything else that is static.

The components folder is where we will spend most of our time. Vue applications are made up

of components, which can be anything from a complete page or smaller parts of a page.

Components in Vue are a great way of organizing code (as we’ll see later), which helps build

scalable and maintainable applications.

On the application’s root folder—referred within the VS Code project structure as TEST—there

are also some important files that have been created by the Vue CLI or Vue UI, such as

package.json and babel.config.js.

The package.json file contains specific information on what runtime and development

dependencies the application uses, and other configuration details on how to serve, build, and

lint the app.

Let’s have a look at what the package.json file looks like.

 27

Listing 2-a: The package.json File

{

 "name": "test",

 "version": "0.1.0",

 "private": true,

 "scripts": {

 "serve": "vue-cli-service serve",

 "build": "vue-cli-service build",

 "lint": "vue-cli-service lint"

 },

 "dependencies": {

 "core-js": "^2.6.5",

 "vue": "^2.6.10"

 },

 "devDependencies": {

 "@vue/cli-plugin-babel": "^3.8.0",

 "@vue/cli-plugin-eslint": "^3.8.0",

 "@vue/cli-service": "^3.8.0",

 "babel-eslint": "^10.0.1",

 "eslint": "^5.16.0",

 "eslint-plugin-vue": "^5.0.0",

 "vue-template-compiler": "^2.6.10"

 },

 "eslintConfig": {

 "root": true,

 "env": {

 "node": true

 },

 "extends": [

 "plugin:vue/essential",

 "eslint:recommended"

],

 "rules": {},

 "parserOptions": {

 "parser": "babel-eslint"

 }

 },

 "postcss": {

 "plugins": {

 "autoprefixer": {}

 }

 },

 "browserslist": [

 "> 1%",

 28

 "last 2 versions"

]

}

The babel.config.js file contains configuration details that allow Babel to compile ECMAScript

2015+ code into a backwards-compatible version of JavaScript that can be executed by most

browsers.

Listing 2-b: The babel.config.js File

module.exports = {

 presets: [

 '@vue/app'

]

}

Now that we’ve explored the most relevant parts of our project’s folder structure, let’s start

modifying the application to what we want to build.

Index.html, main.js, and App.vue

Vue is a single-page application (SPA) framework. For our project this means that it loads one

file, which is the index.html file found under the public folder.

This file contains a placeholder that will be used to automatically inject the Vue application into it

during runtime—let’s have a look.

Listing 2-c: The index.html File

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width,initial-scale=1.0">

 <link rel="icon" href="<%= BASE_URL %>favicon.ico">

 <title>test</title>

 </head>

 <body>

 <noscript>

 ...Please enable it to continue.

 </noscript>

 <div id="app"></div>

https://babeljs.io/
https://babeljs.io/docs/en/learn/
https://babeljs.io/docs/en/learn/
https://en.wikipedia.org/wiki/Single-page_application

 29

 <!-- built files will be automatically injected -->

 </body>

</html>

The placeholder where the complied code will be injected is the div with the id of app—we can

see this in the following code listing.

Listing 2-d: The div Placeholder (index.html)

<div id="app">

 <!-- This is where the compiled code will be injected -->

</div>

In the src folder root, there is a main.js file, which is basically the entry point for Vue—let’s

have a look at the contents of this file.

Listing 2-e: The main.js File

import Vue from 'vue'

import App from './App.vue'

Vue.config.productionTip = false

new Vue({

 render: h => h(App),

}).$mount('#app')

The first import statement basically imports the Vue library. The second import statement

imports the app’s main component, which we will look at shortly.

Then we create a new Vue instance and mount that instance, which will be rendered inside the

div element with the id of app.

Let’s now explore the out-of-the-box content of the App.vue file also found within the src root

folder.

Listing 2-f: The App.vue File

<template>

 <div id="app">

 <HelloWorld msg="Welcome to Your Vue.js App"/>

 </div>

</template>

 30

<script>

import HelloWorld from './components/HelloWorld.vue'

export default {

 name: 'app',

 components: {

 HelloWorld

 }

}

</script>

<style>

#app {

 font-family: 'Avenir', Helvetica, Arial, sans-serif;

 -webkit-font-smoothing: antialiased;

 -moz-osx-font-smoothing: grayscale;

 text-align: center;

 color: #2c3e50;

 margin-top: 60px;

}

</style>

In Vue, files with the .vue extension are component files. This means that within a single file, we

can find the HTML, the JavaScript and the style (CSS) for the component. These sections are

clearly identified as follows.

Listing 2-g: Sections within a .vue File

<template>

 <!-- This is where the component’s HTML resides -->

</template>

<script>

 <!-- This is where the component’s JavaScript resides -->

</script>

<style>

 <!-- This is where the component’s CSS resides -->

</style>

To get a better understanding of how this component is rendered, let’s run the serve command

from the Project dashboard.

 31

Figure 2-c: The serve Command (Project dashboard)

Click Run task, and then click Go to Task to get check the details of the application running

within the Project dashboard. We can see this as follows.

Figure 2-d: The App Runtime Details (Project dashboard)

To run the app, click Open app—this will open a new browser tab with the Vue application

running.

In the following figure, I’ve put side by side VS Code with the App.vue source file, and the Vue

app running on the browser, so we can see how Vue updates the app using hot reloading.

https://vue-loader.vuejs.org/guide/hot-reload.html

 32

Figure 2-e: App.vue (Left) and The App Running (Right)

If I now make a change to App.vue and remove the Vue logo from the code, you’ll notice that

Vue performs a hot reload of the application, and you’ll be able to see the changes getting

applied immediately—which is awesome.

Figure 2-f: App.vue (Left) and the App Running (Right): Hot Reload

 33

The HelloWorld component

Now that we have seen index.html, main.js, and App.vue, let’s quickly talk about the

HelloWorld component.

With the App.vue file, just below the line where we had the reference to the logo, is the

reference to the HelloWorld component.

Listing 2-h: The template section of App.vue

<template>

 <div id="app">

 <HelloWorld msg="Welcome to Your Vue.js App"/>

 </div>

</template>

This HelloWorld component is imported within the script section of App.vue and then

referenced within the components property of the export statement. We can see this as

follows.

Listing 2-i: The script section of App.vue

<script>

import HelloWorld from './components/HelloWorld.vue'

export default {

 name: 'app',

 components: {

 HelloWorld

 }

}

</script>

The import statement is responsible for telling Vue that this component resides within the

components source folder, and it is available within the HelloWorld.vue file—which we can

see as follows.

Listing 2-j: HelloWorld.vue

<template>

 <div class="hello">

 <h1>{{ msg }}</h1>

 <p>

 For a guide and recipes on how to configure / customize

 this project,
 check out the

 34

 vue-

 cli documentation.

 </p>

 <h3>Installed CLI Plugins</h3>

 <a href="https://github.com/vuejs/vue-

 cli/tree/dev/packages/%40vue/cli-plugin-babel" target="_blank"

 rel="noopener">babel

 <a href="https://github.com/vuejs/vue-

 cli/tree/dev/packages/%40vue/cli-plugin-eslint" target="_blank"

 rel="noopener">eslint

 <h3>Essential Links</h3>

 Core Docs

 <a href="https://forum.vuejs.org"

 target="_blank" rel="noopener">Forum

 <a href="https://chat.vuejs.org" target="_blank"

 rel="noopener">Community Chat

 <a href="https://twitter.com/vuejs" target="_blank"

 rel="noopener">Twitter

 <a href="https://news.vuejs.org" target="_blank"

 rel="noopener">News

 <h3>Ecosystem</h3>

 <a href="https://router.vuejs.org" target="_blank"

 rel="noopener">vue-router

 <a href="https://vuex.vuejs.org" target="_blank"

 rel="noopener">vuex

 <a href="https://github.com/vuejs/vue-devtools#vue-devtools"

 target="_blank" rel="noopener">vue-devtools

 <a href="https://vue-loader.vuejs.org" target="_blank"

 rel="noopener">vue-loader

 <a href="https://github.com/vuejs/awesome-vue" target="_blank"

 rel="noopener">awesome-vue

 </div>

</template>

<script>

 35

export default {

 name: 'HelloWorld',

 props: {

 msg: String

 }

}

</script>

<!-- Add "scoped" attribute to limit CSS to this component only -->

<style scoped>

h3 {

 margin: 40px 0 0;

}

ul {

 list-style-type: none;

 padding: 0;

}

li {

 display: inline-block;

 margin: 0 10px;

}

a {

 color: #42b983;

}

</style>

As we can see, the HelloWorld component is structured the same way as App.vue—which

means that it has a template section for the HTML markup, a script section that contains the

JavaScript code, and a style section for the CSS.

There are a couple of interesting things beyond the boilerplate HTML and CSS markup code,

which I would like to explain.

The first one is {{ msg }} within the h1 tag—known as declarative rendering in Vue—which

allows us to render data to the DOM using a template syntax.

Notice how the msg variable has been declared within the script section inside props—this is

because msg is passed as a parameter to the HelloWorld component within App.vue. The

following diagram illustrates this better.

https://vuejs.org/v2/guide/#Declarative-Rendering

 36

Figure 2-g: Declarative Rendering Props in Vue

As you can see, msg is passed as a parameter to the HelloWorld component—this is possible

because msg is defined within the component’s properties (props). Then msg is rendered on the

DOM using the template syntax: {{ msg }}, which displays the text on the UI.

The other interesting feature of the HelloWorld component is the scoped attribute for the style

tag, which limits the CSS to be specific for that component only, and is not available to other

components that are part of the application. This is very useful as individual components can

have their own style.

The rest of the HTML markup with the template tag of the HelloWorld component is just

boilerplate code, which we can remove—so let’s go ahead and do that. This is how the

HelloWorld component code looks now:

Listing 2-k: Modified HelloWorld.vue

<template>

 <div class="hello">

 <h1>{{ msg }}</h1>

 </div>

</template>

<script>

export default {

 name: 'HelloWorld',

 props: {

 37

 msg: String

 }

}

</script>

<!-- Add "scoped" attribute to limit CSS to this component only -->

<style scoped>

h3 {

 margin: 40px 0 0;

}

ul {

 list-style-type: none;

 padding: 0;

}

li {

 display: inline-block;

 margin: 0 10px;

}

a {

 color: #42b983;

}

</style>

Another thing that is very important is that within the template section there can only be one

main element—the following listing describes the correct way of doing it.

Listing 2-l: Correct Main Element (template section)

<!-- This is correct -->

<template>

 <div class="hello">

 </div>

</template>

The following listing describes the incorrect way of doing it—there cannot be two main elements

within a template section.

Listing 2-m: Incorrect Main Element (template section)

<!-- This is incorrect -->

<template>

 <div class="hello">

 </div>

 38

 <div class="hello">

 </div>

</template>

So, within any template section there can only be one main element. If you go to the App.vue

file, you will notice that this is also the case—there’s only one main element within the template

section.

App component structure

One of the fundamental aspects of any Vue application is how the app is structured and how the

components that make up the application relate to each other, which is what we are going to

explore next.

But before we do that, let’s clean things up a bit and get rid of boilerplate code within App.vue,

so that we are left with the following.

Listing 2-n: Modified App.vue

<template>

 <div id="app">

 </div>

</template>

<script>

export default {

 name: 'app',

 components: {

 }

}

</script>

<style>

</style>

Before we start to add any more code to App.vue, let’s set the stage for what we are going to

build.

As mentioned earlier, we are going to build a web-based Vue equivalent of the mobile-based

app that was written in Flutter Succinctly. This is an app that will keep track of important

documents that have an expiry date, such as passports and credit cards. The following figure

shows what the finished Flutter app looks like.

 39

Figure 2-h: The Finished Flutter App

This app essentially has two screens: the main layout, which includes the list of all the

documents that the application keeps track of, and a secondary screen, which is used to enter a

new document or edit existing ones.

If we think of this application in terms of Vue components, we can come up with a component

structure that looks as follows.

 40

Figure 2-i: Relationships between Vue Components in the Finished Flutter App

By looking at the preceding diagram, we can see that App.vue is going to be the app’s main

component file, which will display the list of documents (Docs.vue)—each of the documents on

that list is going to be displayed as an item, through the Item.vue component file.

When an item is clicked, the document details will be displayed using Doc.vue—which will also

be used when a new document is created.

Now that we know how our application will be structured from a component’s functional point of

view, let’s talk about how we can organize the data related to this structure within App.vue.

Vue’s data within components

Within a Vue component, data is not provided as an object, but instead as a function—this is

done so that each instance can maintain an independent copy of the returned data object. So,

within a Vue component, data is not defined like this:

Listing 2-o: How Data is Not Defined (Within a Vue Component)

export default {

 ...

 41

 data: {

 items: []

 }

}

But instead like this:

Listing 2-p: How Data is Defined (Within a Vue Component)

export default {

 ...

 data: () => {

 return {

 items: []

 }

 }

}

Now that we know how to define data in Vue components, let’s add some boilerplate data so

that we can start to scaffold our application as it will eventually look and end up like. To do that,

let’s add the following code to App.vue, which I’ve highlighted in bold.

Listing 2-q: Adding Boilerplate Data to App.vue

<template>

 <div id="app">

 </div>

</template>

<script>

export default {

 name: 'app',

 components: {

 },

 data: () => {

 return {

 items: [

 {

 id: 1,

 name: "Test 1",

 exp: "16 Oct 2019"

 },

 42

 {

 id: 2,

 name: "Test 2",

 exp: "16 Nov 2019"

 }

]

 }

 }

}

</script>

<style>

</style>

Now that we’ve defined some data boilerplate code, let’s wrap this around a component, which

we can use to display this data.

Docs component

Under the components folder within our application (which is the same folder that contains

HelloWorld.vue), let’s create the Docs.vue file, which we will use to display the list of

documents and embed this within the App.vue markup.

Listing 2-r: Docs.vue

<template>

 <div>

 <h1>DocExpire</h1>

 </div>

</template>

<script>

export default {

 name: "Docs"

}

</script>

<style scoped>

</style>

Now we can add a reference to the Docs component and embed it within App.vue as follows.

Listing 2-s: Updated App.vue referencing Docs

 43

<template>

 <div id="app">

 <Docs />

 </div>

</template>

<script>

import Docs from './components/Docs';

export default {

 name: 'app',

 components: {

 Docs

 },

 data: () => {

 return {

 items: [

 {

 id: 1,

 name: "Test 1",

 exp: "16 Oct 2019"

 },

 {

 id: 2,

 name: "Test 2",

 exp: "16 Nov 2019"

 }

]

 }

 }

}

</script>

<style>

</style>

The parts in bold are the references added for the Docs component. Notice how it was added to

the template section as a single HTML entity: <Docs />. Then, within the scripts section, it was

imported using the statement import Docs from './components/Docs'. Finally, it was

added to the components object as Docs.

If you have your application still running, Vue will have reloaded it after making those changes

and you should be able to see the following on the screen.

 44

Figure 2-j: The App Running (After Changes)

If your app is running, you can run npm run serve from the command line, or run the app using

the Vue UI as previously indicated.

Vue DevTools

This is a good time to talk about the Vue DevTools browser extension, which might come in

handy during development, and I would recommend you to install it.

Once your have installed the extension, you’ll see the Vue DevTools icon on your browser. Let’s

check it out.

Figure 2-k: The Vue DevTools Browser Icon

On Chrome, open the Developer tools (Ctrl+Shift+I on Windows) on the same page where the

app is running. Once the Developer tools are opened, click on the Vue tab. This is how it looks

on my machine.

https://github.com/vuejs/vue-devtools
https://chrome.google.com/webstore/detail/vuejs-devtools/nhdogjmejiglipccpnnnanhbledajbpd?hl=en

 45

Figure 2-l: The Vue DevTools Opened

Vue DevTools is a great browser extension to use when you’re developing Vue apps. Not only

does it help inspecting Vue components and their data—like we can see in the previous figure—

but it can also be used to filter events, check state and routing, and inspect component

rendering and frames per second.

Notice how when we’re using Vue DevTools, we can see the data contained within the App

component: the items array and each of its elements.

Using Vue DevTools is quite straightforward, and we’ll cover some parts of it as we go. If you

would like to know more details about it, here’s a good tutorial.

Getting the data into the Docs component

Now that we have seen briefly how to use Vue DevTools to inspect data, the goal is to get the

data from those documents into the Docs component.

We can do this by using a directive called v-bind, which is used for data binding. Let’s have a

look at how to implement this in App.vue.

Listing 2-t: Updated App.vue (Docs with v-bind)

https://medium.com/vue-mastery/how-to-use-the-vue-devtools-af95191ff472

 46

<template>

 <div id="app">

 <Docs v-bind:items="items"/>

 </div>

</template>

// The part of the code that follows remains the same

Notice that by passing v-bind:items="items" to Docs, what we are saying is that we are

binding the items array returned by the data function to a property called items—which we still

have to create—within the Docs component.

So, to do that, let’s go over to Docs.vue and make the following modifications to the code.

Listing 2-u: Updated Docs.vue (items property added)

// The previous part of the code remains the same

<script>

export default {

 name: "Docs",

 props: ["items"]

}

</script>

// The part of the code that follows remains the same

Now that we have declared the items property, we need to be able to display each of the

elements of the items array passed to the Docs component. To do that, we need to loop

through them—this is done in Vue with another directive called v-for.

Listing 2-v: Updated Docs.vue (v-for added)

<template>

 <div>

 <h1>DocExpire</h1>

 <div v-for="item in items">

 <h3>{{item.name}}</h3>

 <p>{{item.exp}}</p>

 </div>

 </div>

</template>

<script>

 47

export default {

 name: "Docs",

 props: ["items"]

}

</script>

<style scoped>

</style>

What this means is that for each item in the items array, passed as the items property to the

Docs component, we are displaying the item.name and item.exp properties of each item

object.

If we saved the changes in VS Code and we look at the app running on the browser, we should

see the following.

Figure 2-m: The Updated Vue App (List of Docs)

To have a better visual understanding of what we have just done with both the v-bind and v-

for directives in App.vue and Docs.vue respectively, let’s have a look at the following diagram.

 48

Figure 2-n: Relationship between v-bind (App.vue) and v-for (Docs.vue)

You can clearly see how the items array returned by the data function in App.vue binds to the

Docs component and is passed as a property. Those items are looped and rendered using the

v-for directive in Docs.vue.

If you installed the Vetur extension, you might have noticed the following syntax issue after you

added the v-for directive.

Figure 2-o: Syntax Issue v-for Directive

This is because we need to specify a key, which is a similar concept used in the React

framework. We can achieve this by binding to a key as follows.

 49

Figure 2-p: Syntax Issue v-for Directive with v-bind:key

Notice how the syntax error goes away once we specify item.id as the key, using v-bind:key

directive.

Summary

We’ve covered quite a bit of ground and managed to lay out the foundations of our application,

but we still need to add quite a lot of logic and further functionality.

In the next chapters, we’ll dig deeper and add application-specific functionality, and the rest of

the components that our application will need, to create our web-based document expiration

tool.

 50

Chapter 3 Expanding the App: UI

Quick intro

In the previous chapter, we laid the foundation for our application by looking at its component

structure, and looked at some of the fundamental constructs of Vue and useful directives, which

are commonly used throughout most Vue applications. We also created the Docs component

and made it work with the boilerplate data within App.vue, which we will later make dynamic.

We are now able to take these concepts further and add the remaining components our

application requires—which is what we’ll do in this chapter.

Item.vue

To keep our code clean and organized, let’s take a step further and add a new component file

called Item.vue, which will be responsible for displaying the information of an individual

document. The Item component will be invoked from the Docs component.

Using VS Code, let’s go ahead and add the Item.vue file under the Components folder. I’ve

added the standard boilerplate code to it, which looks as follows.

Listing 3-a: Item.vue

<template>

 <div>

 </div>

</template>

<script>

export default {

 name: "Item"

}

</script>

<style scoped>

</style>

So far, it’s nothing out of the ordinary, as you can see. Let’s go back to Docs.vue and import

the Item component and bind it to the existing data.

 51

Listing 3-b: Updated Docs.vue

<template>

 <div>

 <h1>DocExpire</h1>

 <div v-bind:key="item.id" v-for="item in items">

 <Item v-bind:item="item"/>

 </div>

 </div>

</template>

<script>

import Item from './Item';

export default {

 name: "Docs",

 props: ["items"],

 components: {

 Item

 }

}

</script>

<style scoped>

</style>

Notice the changes to the Docs component highlighted in bold. We have now added a reference

to the Item component directly within the markup: <Item v-bind:item="item"/>.

Notice how we are passing the item current object from the items array and binding that to the

item property of the Item component.

Also notice how we have imported the Item component (Item.vue) using the import statement

and declared it within the components object within Docs.vue.

Now let’s make the required modifications to Item.vue to accommodate for these changes.

Listing 3-c: Updated Item.vue
<template>

 <div>

 <h3>{{item.name}}</h3>

 <p>{{item.exp}}</p>

 </div>

</template>

 52

<script>

export default {

 name: "Item",

 props: ["item"]

}

</script>

<style scoped>

</style>

As you can see, we’ve added the {{item.name}} expression to the HTML markup and

declared the item property, which we pass from Docs.vue.

To completely understand what we’ve just done, let’s look at the following diagram.

Figure 3-a: Relationship between Docs.vue and Item.vue

Now that we understand how both components relate to each other, we need find a visual way

to differentiate between documents that have expired and those that are still valid (expire in the

future).

To do that, we’ll have to add some CSS styling and make use of logic that shows one icon or

another, depending whether the document has expired or not. But before we do that, let’s add

some style to our application by using Google’s awesome Material Design library.

 53

Vuetify

I’m a big fan of Material Design, and while writing Flutter Succinctly, I was pleased that Material

Design was provided out of the box with the Flutter framework.

With Vue, Material Design is not part of the framework; however, there’s a Material Design

Component framework that works great with Vue called Vuetify—which is what we’ll be using.

Before installing Vuetify, please back up your existing App.vue file, as Vuetify might overwrite it.

To install Vuetify, all you need to do is run the following command on your project root folder.

Listing 3-d: How to Install Vuetify
vue add vuetify

Once you have executed the command, you will be requested to choose a preset, with the

following options.

Figure 3-b: Vuetify Presets

In my case, I simply chose the Default (recommended) preset. Once you’ve chosen your

preset option, Vuetify will be added to the project and the package.json file will be updated with

a reference to it.

Once installed, the next thing we need to do is to add it to our existing application, so we can

start to benefit from the Material Design styling.

To do that, open the main.js file found within the src folder of your project. Once you’ve opened

main.js, add the following lines to the file.

import Vuetify from 'vuetify'

Vue.use(Vuetify)

This has been highlighted in bold the code listing below, which corresponds to the main.js file

within the project src folder.

Listing 3-e: Updated main.js (Adding Vuetify)
import Vue from 'vue'

import './plugins/vuetify'

import App from './App.vue'

import Vuetify from 'vuetify'

https://material.io/design/
https://material.io/develop/flutter/
https://vuetifyjs.com/en/

 54

Vue.use(Vuetify)

Vue.config.productionTip = false

new Vue({

 render: h => h(App),

}).$mount('#app')

Now, we are ready to give a Material Design look and feel to our application. Vuetify is fully

enabled and ready to be used.

Styling App.vue

Besides making our application look prettier, one of the key aspects of choosing Vuetify is to try

to make the application look as close as possible to the one developed in Flutter Succinctly.

One of the distinct features about the Flutter app is that it includes a floating button, which is

used to add new documents to the application.

Based on that concept, let’s modify our application accordingly, so we can end up with

something that looks like this.

Figure 3-c: Our App’s UI (Using Vuetify)

Let’s start off by modifying App.vue with the following code.

Listing 3-f: Updated App.vue (Using Vuetify)
<template>

 <div id="app">

 <v-app>

 55

 <v-layout row>

 <v-flex xs12 sm6 offset-sm3>

 <v-card>

 <Docs :items="items"/>

 <v-card-text tyle="height: 100px; position: relative">

 <v-btn

 big

 color="pink"

 dark

 absolute

 bottom

 right

 fab

 >

 <v-icon>add</v-icon>

 </v-btn>

 </v-card-text>

 </v-card>

 </v-flex>

 </v-layout>

 </v-app>

 </div>

</template>

<script>

import Docs from './components/Docs';

export default {

 name: 'app',

 components: {

 Docs

 },

 data: () => {

 return {

 items: [

 {

 id: 1,

 name: "Test 1",

 exp: "16 Oct 2019"

 },

 {

 id: 2,

 name: "Test 2",

 exp: "16 Nov 2019"

 56

 }

]

 }

 }

}

</script>

<style>

</style>

I’ve highlighted in bold the parts of the code that have been added. As you can see, it’s basically

HTML markup that has changed. The rest of the App.vue code remains the same.

Notice the <Docs :items="items"/> syntax instead of <Docs v-bind:items="items"/>.

This is because v-bind:items can be shortened to simply :items. From now on, to make the

syntax simpler, we’ll use the : shortcut syntax instead of v-bind.

One great thing about Vuetify is that it comes with prebuilt Material Design components, which

make the development of the app’s UI much faster and easier than using regular HTML markup.

To better understand the markup added to App.vue, and the UI that is visible on the screen,

let’s look at the following diagram.

Figure 3-d: Relationship between App.vue and the UI

As you can see, there are two main distinct UI areas: one is the Docs component (highlighted in

green), which encapsulates most of the UI, and then the floating button area (highlighted in

purple).

 57

The area highlighted in yellow in Figure 3-d defines the layout that is used to render the

application; this is the reason why the v-layout, v-flex, and v-card Vuetify components are

used—they define the point grid system Vuetify uses.

Styling Docs.vue

Just like we’ve done with App.vue, we need to do the same with Docs.vue and style it

accordingly using Vuetify. Let’s go ahead and do that.

Listing 3-g: Updated Docs.vue (Using Vuetify)
<template>

 <div>

 <v-toolbar color="blue" dark>

 <v-toolbar-title>DocExpire</v-toolbar-title>

 <v-spacer></v-spacer>

 </v-toolbar>

 <v-list two-line>

 <template v-for="item in items">

 <Item :key="item.id" :lgth="items.length" :item="item"/>

 </template>

 </v-list>

 </div>

</template>

<script>

import Item from './Item';

export default {

 name: "Docs",

 props: ["items"],

 components: {

 Item

 }

}

</script>

<style scoped>

</style>

As you might have noticed, we added the v-toolbar and v-list components to Docs.vue to

give it the Material Design look and feel.

https://vuetifyjs.com/en/framework/grid

 58

The following diagram illustrates the relationship between the Docs.vue markup and the UI.

Let’s have a look.

Figure 3-e: Relationship between Docs.vue and the UI

The markup is quite self-explanatory: the v-toolbar component creates the DocExpire

toolbar, and the v-list component creates the list that will contain each of the Item

components.

Styling Item.vue

Now that we’ve added Vuetify components to App.vue and Docs.vue, let’s style Item.vue as

well. Here’s what the updated code looks like.

Listing 3-h: Updated Item.vue (Using Vuetify)
<template>

 <div>

 <v-list-tile avatar ripple>

 <v-btn flat icon color="red lighten-2">

 <v-icon>delete_forever</v-icon>

 </v-btn>

 <v-list-tile-content>

 <v-list-tile-title class="text--primary">

 {{ item.name }}

 </v-list-tile-title>

 <v-list-tile-sub-title>

 {{ item.exp }}

 </v-list-tile-sub-title>

 <v-list-tile-sub-title>

 Days left...

 </v-list-tile-sub-title>

 </v-list-tile-content>

 <v-list-tile-action>

 <v-list-tile-action-text>

 59

 {{ item.id }}

 </v-list-tile-action-text>

 <v-icon color="green lighten-1">done_outline</v-icon>

 <v-icon color="red lighten-1">warning</v-icon>

 </v-list-tile-action>

 </v-list-tile>

 <v-divider v-if="item.id + 1 < lgth"

 :key="`divider-${item.id}`">

 </v-divider>

 </div>

</template>

<script>

export default {

 name: "Item",

 props: ["item", "lgth"]

}

</script>

<style scoped>

</style>

The Item component contains the markup logic that displays each of the documents on the list,

so to understand this better, let’s have a look at the following diagram that explains the

relationship between the markup and the UI.

Figure 3-f: Relationship between Item.vue and the UI

As we can see, the v-btn component is responsible for creating the Delete button that appears

on the left side of each document. This is highlighted in blue in Figure 3-f.

 60

There is a v-list-tile-content component (highlighted in yellow) that encapsulates and

displays the name of the document (item.name), the document’s expiration (item.exp), and

the number of days left, which for now is static text, but we’ll modify it and make it dynamic later.

Finally, there is a v-list-tile-action component (highlighted in red) that encapsulates and

displays the icons seen to the right of the text, for each document.

Notice that between each document (item), there is a v-divider component (highlighted in

green). This divider is related to the Item component by the item.id property.

You’ve also probably noticed that there’s an additional property being passed from the code in

Docs.vue to the Item component. This is the lgth property, which is used for adding a

separator between each document.

Figure 3-g: The lgth Property passed to the Item component

The lgth property is nothing more than the length of the items array, which indicates the

number of documents that exist and are returned by the data function with App.vue.

The reason that we pass the lgth property to the Item component is that we only want to

display the divider between items. So, if there are two items to display, there should be only one

divider. This can be achieved by using the v-if directive with the following condition.

Figure 3-h: The v-if Directive Used for Showing the Divider

So, the divider will only be shown when item.id + 1 is less than the value of lgth (number of

documents).

Now that we have styled our existing components, we still need to create a component that we

can use when creating a new document or when modifying an existing one.

Creating Doc.vue

The component file that will be responsible for creating a new document or modifying an

existing one is going to be called Doc.vue. So, in VS Code, go ahead and create this file under

the components folder of your project.

To get a sense of what we will create, the figure that follows shows what the finished

component’s UI looks like.

 61

Figure 3-i: The Finished UI of the Doc Component

As you can see, this is UI is almost identical to the one from the Flutter application—from a

functional point, it will be the same.

Now that we’ve seen the finished UI, let’s have a look at the code required to build it, which is

shown in the listing that follows.

Listing 3-i: Doc.vue (Using Vuetify)
<template>

 <div>

 <v-dialog v-model="showModal"

 fullscreen

 hide-overlay

 transition="dialog-bottom-transition"

 scrollable

 >

 <v-card tile>

 <v-toolbar color="blue" dark>

 <v-btn icon dark @click="hide">

 <v-icon>close</v-icon>

 </v-btn>

 <v-toolbar-title>{{item.name}}</v-toolbar-title>

 <v-spacer></v-spacer>

 <v-toolbar-items>

 62

 <v-btn dark flat @click="save">Save</v-btn>

 </v-toolbar-items>

 </v-toolbar>

 <v-card-text>

 <v-list three-line subheader>

 <v-list-tile avatar>

 <v-list-tile-content>

 <v-list-tile-title>

 Document Name

 </v-list-tile-title>

 <v-list-tile-sub-title></v-list-tile-sub-title>

 <v-text-field

 ref="name"

 v-model="name"

 :rules="[() => !!name || 'Required field']"

 required

 >

 </v-text-field>

 </v-list-tile-content>

 </v-list-tile>

 <v-list-tile avatar>

 <v-list-tile-content>

 <v-list-tile-title>

 Expiry Date

 </v-list-tile-title>

 <v-list-tile-sub-title></v-list-tile-sub-title>

 <v-menu

 ref="menu"

 v-model="menu"

 :close-on-content-click="false"

 :nudge-right="40"

 :return-value.sync="date"

 lazy

 transition="scale-transition"

 offset-y

 full-width

 min-width="290px"

 >

 <template v-slot:activator="{ on }">

 <v-text-field

 v-model="date"

 prepend-icon="event"

 readonly

 v-on="on"

 63

 ></v-text-field>

 </template>

 <v-date-picker

 v-model="date"

 :min=date

 max="2099-12-31"

 no-title scrollable>

 <v-spacer></v-spacer>

 <v-btn flat color="primary"

 @click="menu = false">Cancel</v-btn>

 <v-btn flat color="primary"

 @click="$refs.menu.save(date)">

 OK

 </v-btn>

 </v-date-picker>

 </v-menu>

 </v-list-tile-content>

 </v-list-tile>

 </v-list>

 <v-divider></v-divider>

 <v-list four-line subheader>

 <v-list-tile avatar>

 <v-list-tile-action>

 <v-switch

 v-model="alert1year"

 :label="`Alert @ 1.5 & 1 year(s)`"

 ></v-switch>

 </v-list-tile-action>

 </v-list-tile>

 <v-list-tile avatar>

 <v-list-tile-action>

 <v-switch

 v-model="alert6months"

 :label="`Alert @ 6 months`"

 ></v-switch>

 </v-list-tile-action>

 </v-list-tile>

 <v-list-tile avatar>

 <v-list-tile-action>

 <v-switch

 v-model="alert3months"

 :label="`Alert @ 3 months`"

 ></v-switch>

 </v-list-tile-action>

 64

 </v-list-tile>

 <v-list-tile avatar>

 <v-list-tile-action>

 <v-switch

 v-model="alert1month"

 :label="`Alert @ 1 month or less`"

 ></v-switch>

 </v-list-tile-action>

 </v-list-tile>

 </v-list>

 </v-card-text>

 <div style="flex: 1 1 auto;"></div>

 </v-card>

 </v-dialog>

 </div>

</template>

<script>

export default {

 name: "Doc",

 props: ["item"],

 data: () => {

 return {

 name: "",

 date: new Date().toISOString().substr(0, 10),

 alert1year: true,

 alert6months: true,

 alert3months: true,

 alert1month: true,

 menu: false,

 showModal: false

 }

 },

 methods: {

 show() {

 this.showModal = true;

 },

 hide(){

 this.showModal = false;

 },

 save(){

 this.showModal = false;

 }

 65

 }

 }

</script>

<style scoped>

</style>

There’s quite a lot going on here—not only is the code building the UI, but it also has logic for

displaying and using a date/month picker Vuetify component.

In the statement !!name, the double exclamation point characters convert any false-like value

(0, null, undefined, false) to a strictly Boolean value.

Let’s break this code into smaller pieces to understand what is going on. First, we’ll have a look

at the main toolbar and see which Vuetify components are being used.

Figure 3-j: Relationship between the Toolbar Code and the UI (Doc.vue)

We can see that the v-dialog component wraps up the complete UI of the Doc.vue. Within v-

dialog there’s a v-card, and within it we have the v-toolbar component—which is what we

are going to focus on now.

The toolbar is made up of three main parts: The X button (v-btn), which closes the dialog and

returns the control to the main screen, the toolbar title (v-toolbar-title), and the Save button

(v-btn).

Now that we’ve covered the toolbar, let’s explore the part of the UI that renders the Document

Name field.

https://vuetifyjs.com/en/components/date-pickers

 66

Figure 3-k: Relationship between the “Document Name” Code and UI (Doc.vue)

We can see that after the v-toolbar component, there’s a v-list component that

encapsulates the remaining UI.

Within v-list there’s a v-list-tile component that is used for displaying the Document

Name label and field.

Inside of v-list-tile there’s a v-tile-tile-content component that encapsulates the label

and field components.

The v-list-tile-title component is the one that displays the label name, which is clearly

highlighted in green in Figure 3-k.

The v-text-field component is the one that renders the textbox field. This component has

some interesting properties and directives, which determine its functionality.

The ref and v-model directives are responsible for binding the v-text-field component to

the name field.

The rules property is used for validating the data entered through the textbox. This executes a

lambda function that performs the validation, which simply checks that the value of name is not

empty. This is used in combination with the required property.

This covers the Document Name field. Now, let’s explore the Expiry Date field, which is quite

interesting as it contains a date/month picker Vuetify component. When the focus is on the

Expiry Date field, the picker is displayed—which we can see in the following figure.

https://vuetifyjs.com/en/components/date-pickers

 67

Figure 3-l: “Expiry Date” Picker (Doc.vue)

Figure 3-m illustrates how the date/month picker code relates to the actual component on the

screen—let’s have a look.

Figure 3-m: The Date/Month Picker and Date Relationship (Doc.vue)

 68

We can see that the date/month picker component (v-date-picker) binds to date, which is

returned by the Doc component’s data function. The v-date-picker component also binds to

v-text-field through date.

Notice that date also binds to the min property of v-text-field, which means that the minimal

date that can be selected is today’s date—this means that only dates that are either in the

future or equal to today’s date can be selected using the picker. This ensure that documents

cannot have an expiry date in the past unless the document was created in the past and the

date has already expired.

The last part of the Doc component’s UI has to do with the four alert switches—let’s explore this

markup code and see how it relates to the UI through the following diagram.

Figure 3-n: The Relationship between the Alert Switches and the UI (Doc.vue)

 69

As we can see, each alert switch is represented by an individual v-switch component, which is

contained within the v-list-tile-action and v-list-tile components—which makes them

aligned and correctly positioned on the UI layout.

Each v-switch component has a binding to a variable through the v-model directive. These

variables will store within the Doc component the values set through the v-switch components.

You might have noticed that the v-model directive has been used quite a lot within the Doc

component. The v-model directive is used in Vue for two-way data binding—which means that

if the data changes, the UI components referencing it update. If the UI component value

changes, then the data also changes. This is a powerful feature that significantly speeds up

development.

This concludes the UI aspects of the Doc component. However, to invoke it, we need to make

some adjustments to App.vue (when creating a new document) and to Item.vue (when

modifying an existing document)—which is what we’ll do next.

Adapting App.vue for Doc.vue

With the UI of the Doc component (Doc.vue) ready, we need to be able to invoke the Doc

component, when creating a new document, by clicking on the floating button within App.vue.

To be able to do that, we need to adjust the code we have written for App.vue. The following

code listing contains the adapted code that can invoke the Doc component—let’s have a look at

what those changes are (highlighted in bold).

Listing 3-j: App.vue (Able to invoke Doc.vue)
<template>

 <div id="app">

 <v-app>

 <Doc ref="modal" :item="newdoc" :items="items" />

 <v-layout row>

 <v-flex xs12 sm6 offset-sm3>

 <v-card>

 <Docs :items="items"/>

 <v-card-text tyle="height: 100px; position: relative">

 <v-btn @click="openModal"

 big

 color="pink"

 dark

 absolute

 bottom

 right

 fab

 >

 <v-icon>add</v-icon>

 70

 </v-btn>

 </v-card-text>

 </v-card>

 </v-flex>

 </v-layout>

 </v-app>

 </div>

</template>

<script>

import Docs from './components/Docs';

import Doc from './components/Doc';

export default {

 name: 'app',

 components: {

 Docs, Doc

 },

 methods: {

 openModal() {

 this.$refs.modal.show();

 }

 },

 data: () => {

 return {

 newdoc: {

 id: -1,

 name: "New Document",

 exp: "",

 alert1year: true,

 alert6months: true,

 alert3months: true,

 alert1month: true

 },

 items: [

 {

 id: 1,

 name: "Test 1",

 exp: "2019-10-16",

 alert1year: false,

 alert6months: true,

 alert3months: false,

 alert1month: false

 },

 71

 {

 id: 2,

 name: "Test 2",

 exp: "2018-11-16",

 alert1year: false,

 alert6months: false,

 alert3months: false,

 alert1month: true

 }

]

 }

 }

}

</script>

<style>

</style>

The first noticeable change is that <Doc ref="modal" :item="newdoc" :items="items" />

has been included within the markup. This means that the Doc component is now included, but

it won’t be visible until it is invoked.

We’ll need to be able to invoke the show method from the Doc component to display it. To do

that, we need to add the ref attribute to the Doc HTML element inside the template tag, so we

can access it using the $refs property, as follows.

openModal() {

 this.$refs.modal.show();
}

The openModal method simply invokes the show method from the Doc component, making it

visible.

Notice that we are also passing two other properties to the Doc component: One is the newdoc

object, which binds to the item property, and the other is the items array (which contains the

list of documents), which binds to the items property.

The newdoc object is simply a JSON representation of a new document that contains default

settings—it’s an empty placeholder for creating a new document, which we can see as follows.

newdoc: {

 id: -1,

 name: "New Document",

 exp: "",

 alert1year: true,

 alert6months: true,

 72

 alert3months: true,

 alert1month: true
}

By passing the newdoc object to the Doc component, we are telling Doc.vue that we want to

create a new document and not modify an existing one.

Notice that besides the id, name, and exp properties, we now have also the alert1year,

alert6months, alert3months, and alert1month properties—these will be used to set the

values of the v-switch components within Doc.vue.

However, you might be asking yourself: Why do we need to pass the complete list of documents

(the items array) to Doc.vue?

The reason is that when we add the logic that will be responsible for adding the new document

to a database, we’ll need to add that new element to the items array. In other words, the new

document will have to be added to the existing list of documents—and that will be done from

Doc.vue, and not App.vue. This is why the items array is passed to the Doc component.

Notice that a click event handler has been added to the floating button (v-btn). This click

event will execute the openModal method, which is responsible for invoking the show method

from the Doc component.

<v-btn @click="openModal" …>

Next, we can see that we are importing the Doc component within the script section: import

Doc from './components/Doc'; and that we have added Doc to the components object.

components: {
 Docs, Doc
}

As for the items array, notice how I’ve added the alert1year, alert6months,

alert3months, and alert1month properties to each of the records. For now, these are static

records, but later we’ll make this dynamic.

Notice as well that I’ve changed the date format of the expiry date (exp) property to “yyyy-mm-

dd” (for example, "2018-11-16") instead of “dd MMM yyyy”, as this will make the functionality

of the application easier to write (without the need to convert dates from one format to another).

Adapting Docs.vue for Doc.vue

Although Docs.vue does not directly invoke Doc.vue, there is a minor change that is important

for the overall functionality of the adapted version of Item.vue, which is required for it to work

properly with Doc.vue.

Listing 3-k: Docs.vue (For Item.vue to be able to invoke Doc.vue)
<template>

 73

 <div>

 <v-toolbar color="blue" dark>

 <v-toolbar-title>DocExpire</v-toolbar-title>

 <v-spacer></v-spacer>

 </v-toolbar>

 <v-list two-line>

 <template v-for="item in items">

 <Item :key="item.id" :lgth="items.length"

 :item="item" :items="items"/>

 </template>

 </v-list>

 </div>

</template>

<script>

import Item from './Item';

export default {

 name: "Docs",

 props: ["items"],

 components: {

 Item

 }

}

</script>

<style scoped>

</style>

The minor change has been highlighted in bold in the preceding code. As you can see, we are

passing the list of documents (items array) to Item.vue—which previously we didn’t have.

We are doing this because Item.vue will need to be able to update the items array when a

document from the list is deleted, something we will see shortly with the updated code for

Item.vue.

Adapting Item.vue for Doc.vue

There are some interesting changes that are required for Item.vue to be able to invoke

Doc.vue. Remember that Item.vue needs to invoke Doc.vue when an existing document needs

to be edited. Let’s have a look at the updated code for Item.vue, which can do this.

 74

Listing 3-l: Item.vue (Able to invoke Doc.vue)
<template>

 <div>

 <Doc ref="modal" :item="item" :items="items" />

 <v-list-tile avatar ripple>

 <v-btn @click="removeItem" flat icon color="red lighten-2">

 <v-icon>delete_forever</v-icon>

 </v-btn>

 <v-btn @click="openModal" flat icon color="green lighten-2">

 <v-icon>edit</v-icon>

 </v-btn>

 <v-list-tile-content>

 <v-list-tile-title class="text--primary">

 {{ item.name }}

 </v-list-tile-title>

 <v-list-tile-sub-title>

 {{ item.exp }}

 </v-list-tile-sub-title>

 <v-list-tile-sub-title>

 {{daysLeft(item.exp)}}

 </v-list-tile-sub-title>

 </v-list-tile-content>

 <v-list-tile-action>

 <v-list-tile-action-text>

 {{ item.id }}

 </v-list-tile-action-text>

 <v-icon v-if="!hasExpired(item.exp)"

 color="green lighten-1">done_outline</v-icon>

 <v-icon v-else color="red lighten-1">warning</v-icon>

 </v-list-tile-action>

 </v-list-tile>

 <v-divider v-if="item.id + 1 < lgth"

 :key="`divider-${item.id}`"></v-divider>

 </div>

</template>

<script>

import Doc from './Doc';

import moment from 'moment';

export default {

 name: "Item",

 components: {

 Doc

 75

 },

 props: ["item", "lgth", "items"],

 methods: {

 openModal() {

 this.$refs.modal.show();

 },

 removeItem() {

 let idx = this.items.indexOf(this.item);

 if (idx > -1) {

 this.items.splice(idx, 1);

 }

 },

 daysLeft(dt) {

 let ends = moment(dt);

 let starts = moment(Date.now());

 let years = ends.diff(starts, "year");

 starts.add(years, "years");

 let months = ends.diff(starts, "months");

 starts.add(months, "months");

 let days = ends.diff(starts, "days");

 let rs = years + " years " + months +

 " months " + days + " days";

 return this.hasExpired(dt) ?

 "Expired " + rs.replace(/-/g, '') +

 " ago": "Left: " + rs;

 },

 hasExpired(dt) {

 return (Date.parse(dt) <= Date.now()) ? true : false;

 }

 }

}

</script>

<style scoped>

</style>

The first thing we can see is that the Doc component has been added to the markup, even

though it is not visible.

<Doc ref="modal" :item="item" :items="items" />

This is practically identical as to what was done within App.vue—where the Doc component

was added to the markup, with the only difference that in this case, the item property binds to

the existing item and not the newdoc object.

 76

Notice how the items array is also passed to the Doc component—this is because when the

Save button is clicked within Doc.vue, the document edited will need to be updated on the

items array—which is something we’ll do later.

Next, we’ve added two event handlers: one that invokes removeItem, and another that calls the

openModal method.

The removeItem method is executed when the red trash bin (delete_forever) icon is clicked,

whereas the openModal method gets triggered when the green pencil (edit) icon is clicked.

The next change from the previous version of the code is that we have replaced the static text

for the days left with dynamic content: {{daysLeft(item.exp)}}.

Basically, what we do here is to invoke the daysLeft method by passing to it the expiry date

(exp) of the current item, which returns the number of years, months, and days before the

document expires—or if the document has already expired, the number of years, months and

days since that occurred.

Figure 3-o: Years, Months, and Days (Item.vue)

The next change we see in the HTML markup is an interesting one. What we are doing is

displaying either the icon that indicates that the document is active—has not expired

(done_outline)—or we display the icon that indicates that the document has expired

(warning).

<v-icon v-if="!hasExpired(item.exp)"
 color="green lighten-1">done_outline</v-icon>

<v-icon v-else color="red lighten-1">warning</v-icon>

The way we do this is by using the v-if and v-else directives. The v-if directive basically

means that the first v-icon component will be shown only if the document (item) has not

expired—if the hasExpired method returns false.

Figure 3-p: The v-icon if the Document (item) has not expired

The second v-icon component will only be shown when the hasExpired method returns true,

for the current item—when the document has expired.

 77

Figure 3-q: The v-icon if the Document (item) has expired

Next, notice the following statement: import moment from 'moment';

This statement imports the Moment.js library—which is a great way to parse, validate, display,

and manipulate dates in JavaScript. This is what we’ll use within the hasExpired method to

check if the expiry date (exp) of the document has expired.

Before we can use this library, we need to install it. To do that, open the command prompt on

your project’s root folder and type in the following command.

Listing 3-m: Command to Install Moment.js
npm install moment --save

Once Moment.js has been successfully installed, we can use it in our code—which we will look

at shortly.

Moving on, we can also see that the items array has been added to the props array. As

explained previously, the items array is passed on to the Doc component.

Next, it’s time to look at the methods object and explore each of the methods declared there.

The first one is the openModal method.

openModal() {

 this.$refs.modal.show();

}

This method is identical to the one we declared within the App.vue methods object. It basically

invokes the show method of Doc.vue—this way the Doc component can be displayed on the

screen.

The next method is the removeItem method, which is responsible for removing the current

document (item) if the user clicks on the delete_forever icon.

removeItem() {

 let idx = this.items.indexOf(this.item);

 if (idx > -1) {

 this.items.splice(idx, 1);

 }
}

https://momentjs.com/

 78

This method finds the current document (item) with the list of documents (items array) by

calling the indexOf method. If found (idx > -1), then the current document (item) is removed

from the items array, using the splice method.

The daysLeft method is an interesting one, as it makes extensive use of the Moment.js library

to determine the number of years, months, and days until a document expires or after it has

expired. Let’s have a look.

daysLeft(dt) {
 let ends = moment(dt);
 let starts = moment(Date.now());
 let years = ends.diff(starts, "year");
 starts.add(years, "years");
 let months = ends.diff(starts, "months");
 starts.add(months, "months");
 let days = ends.diff(starts, "days");
 let rs = years + " years " + months +
 " months " + days + " days";
 return this.hasExpired(dt) ?
 "Expired " + rs.replace(/-/g, '') +
 " ago": "Left: " + rs;
}

The first two lines of code get the ends and starts dates by calling the moment function. The

ends date is item.exp, which is passed to the daysLeft method as dt. The starts date is the

current date, which is retrieved by calling Date.now.

The next five lines calculate the differences between both dates by years, months, and days.

Next, the current document’s expiry date (dt) is evaluated by the hasExpired method to see if

the date has expired. The corresponding message, which will get displayed on the screen, is

returned by the daysLeft method.

Finally, the hasExpired method, as its name implies, checks if the current document’s expiry

date (dt) is before today’s date—if so, it would mean that the document has expired and true is

returned—otherwise false is returned as a result. We can see this as follows.

hasExpired(dt) {
 return (Date.parse(dt) <= Date.now()) ? true : false;
}

That concludes the review of the changes to Item.vue. Next, let’s explore some minor

adaptations required for Doc.vue. All the changes to App.vue, Docs.vue, and Item.vue we’ve

made work seamlessly with Doc.vue.

 79

Adjustments to Doc.vue

We need to make some minor changes to Doc.vue so this can all work. Let’s have a look at the
updated code.

Listing 3-n: Updated Doc.vue (which works with the rest of the updated code)
<template>

 <div>

 <v-dialog v-model="showModal"

 fullscreen

 hide-overlay

 transition="dialog-bottom-transition"

 scrollable

 >

 <v-card tile>

 <v-toolbar color="blue" dark>

 <v-btn icon dark @click="hide">

 <v-icon>close</v-icon>

 </v-btn>

 <v-toolbar-title>{{item.name}}</v-toolbar-title>

 <v-spacer></v-spacer>

 <v-toolbar-items>

 <v-btn dark flat @click="save">Save</v-btn>

 </v-toolbar-items>

 </v-toolbar>

 <v-card-text>

 <v-list three-line subheader>

 <v-list-tile avatar>

 <v-list-tile-content>

 <v-list-tile-title>Document Name

 </v-list-tile-title>

 <v-list-tile-sub-title></v-list-tile-sub-title>

 <v-text-field

 ref="name"

 v-model="item.name"

 :rules="[() => !!item.name ||

 'Required field']"

 required

 >

 </v-text-field>

 </v-list-tile-content>

 </v-list-tile>

 <v-list-tile avatar>

 <v-list-tile-content>

 80

 <v-list-tile-title>Expiry Date

 </v-list-tile-title>

 <v-list-tile-sub-title></v-list-tile-sub-title>

 <v-menu

 ref="menu"

 v-model="menu"

 :close-on-content-click="false"

 :nudge-right="40"

 :return-value.sync="date"

 lazy

 transition="scale-transition"

 offset-y

 full-width

 min-width="290px"

 >

 <template v-slot:activator="{ on }">

 <v-text-field

 v-model="date"

 prepend-icon="event"

 readonly

 v-on="on"

 ></v-text-field>

 </template>

 <v-date-picker

 v-model="date"

 :min=today

 max="2099-12-31"

 no-title scrollable>

 <v-spacer></v-spacer>

 <v-btn flat color="primary"

 @click="menu = false">Cancel</v-btn>

 <v-btn flat color="primary"

 @click="$refs.menu.save(date)">

 OK

 </v-btn>

 </v-date-picker>

 </v-menu>

 </v-list-tile-content>

 </v-list-tile>

 </v-list>

 <v-divider></v-divider>

 <v-list four-line subheader>

 <v-list-tile avatar>

 <v-list-tile-action>

 81

 <v-switch

 v-model="item.alert1year"

 :label="`Alert @ 1.5 & 1 year(s)`"

 ></v-switch>

 </v-list-tile-action>

 </v-list-tile>

 <v-list-tile avatar>

 <v-list-tile-action>

 <v-switch

 v-model="item.alert6months"

 :label="`Alert @ 6 months`"

 ></v-switch>

 </v-list-tile-action>

 </v-list-tile>

 <v-list-tile avatar>

 <v-list-tile-action>

 <v-switch

 v-model="item.alert3months"

 :label="`Alert @ 3 months`"

 ></v-switch>

 </v-list-tile-action>

 </v-list-tile>

 <v-list-tile avatar>

 <v-list-tile-action>

 <v-switch

 v-model="item.alert1month"

 :label="`Alert @ 1 month or less`"

 ></v-switch>

 </v-list-tile-action>

 </v-list-tile>

 </v-list>

 </v-card-text>

 <div style="flex: 1 1 auto;"></div>

 </v-card>

 </v-dialog>

 </div>

</template>

<script>

export default {

 name: "Doc",

 props: ["item", "items"],

 data: () => {

 82

 return {

 name: "",

 date: new Date().toISOString().substr(0, 10),

 today: new Date().toISOString().substr(0, 10),

 menu: false,

 showModal: false

 }

 },

 methods: {

 show() {

 this.showModal = true;

 if (this.item.id > -1) {

 this.date = this.item.exp;

 }

 },

 hide(){

 this.showModal = false;

 },

 save(){

 this.showModal = false;

 }

 }

 }

</script>

<style scoped>

</style>

The first change we can see is that the min property of the v-date-picker component binds to

today instead of date.

The reason for this change is that if date (which represents the document’s expiry date), when

Doc.vue loads, has expired—then the minimum date that v-date-picker should allow needs

to be today’s date—so no dates in the past can be selected as a new expiry date.

Let’s have a look at the following example to understand this better.

 83

Figure 3-r: The min property of v-date-picker set to today’s date

The document’s expiry date that has been loaded is 16 November 2018, which is a date in

past—in other words, this date has already expired.

Because the min property of the v-date-picker component is set to the value of today rather

than the value of date, the v-date-picker component doesn’t allow dates in the past to be

selected—which is why they appear grayed out.

This is exactly what we want—the expiration date for new or modified documents should only be

equal to today’s date or a date in the future.

Next, we can see that the v-text-field component now binds to item.name rather than the

name property, as it did previously. This ensures that the document’s name is loaded from the

current document (item).

The next change we can see is that v-switch components now have a two-way data binding to

their respective properties within the item object.

So, now we have <v-switch v-model="item.alert1year" … > instead of <v-switch v-

model="alert1year" … >, and the same for the other v-switch components—with their

respective item properties.

The reason for these changes for each v-switch component is that if any of those settings

change, then those values should be automatically updated into their respective object

properties, so they can be later persisted to the database.

Next, we can see that the items array has been added to the props array. We’ll need this later

when persisting data to the database and then refreshing the list of documents (items) from

within Doc.vue, which we will look at in the next chapter.

Following this, notice that the today property has been added with a default value to the data

function within the script section.

 84

The final change we can appreciate is within the show method, which adds a bit of logic that

checks if a document already exists (item.id > -1), then assigns to date the document’s

expiry date (item.exp); otherwise, the date property will have today’s date (for a new

document).

Let’s now run our app and see the changes we have made in action. If your app is not running,

execute npm run serve from the command prompt and refresh your browser page. When the

app is running, you should see the following screen.

Figure 3-s: The App’s Main Screen (After all the changes done)

If we click on the pencil icon on one of the documents, the Doc component opens with the

correct values loaded.

Figure 3-t: The document loaded with the correct data (After all the changes done)

 85

If you click on the floating button, the same dialog window will open, but with the default data for

a new document. If you click the delete_forever icon, the item will be deleted from the

document list.

If you delete one of the documents and reload the browser page, then the list will be populated

again with the two documents.

Summary

Now that all our changes are working, we almost have a fully working application. We're only

missing four final parts, which are:

• Loading all the documents from the database.

• Saving a new document to the database.

• Editing an existing document and saving it to the database.

• Updating the database when a document is deleted.

These required changes are the final elements that our application needs to be fully functional.

We’ll explore them in the next chapter.

 86

Chapter 4 Finalizing the App: Database

Quick intro

Throughout the previous chapters, we built the foundation of our application, and now have an

almost functional application. The only thing we are missing is being able to persist the data the

app uses, which will be the focus of this chapter.

To make things simple, we are going to use a Google spreadsheet as our app’s database table,

and we’ll access the data using a JavaScript library and service specifically designed to use a

Google Sheets spreadsheet—this service is called Sheetsu.

Sheetsu dashboard

The first thing to do is to sign up for the Sheetsu service—this can easily be done by signing up

with your existing Gmail or Google account. The setup process is fast and simple, and can be

completed in less than a minute.

Once you’re signed up for the Sheetsu service, you’ll be redirected to the dashboard, which

looks as follows.

Figure 4-a: The Sheetsu Dashboard

To get started, click Go to Google Sheet. This will open the Google spreadsheet in a different

browser tab, which we can see as follows.

https://sheetsu.com/

 87

Figure 4-b: The Google Spreadsheet Table

I’ve added the column names, the two records described within the data function of App.vue,

and a third, additional record.

Click on the Settings link next to the name of the table, in this case called Example Table, to

give it another name. You should see the following dialog with the default properties shown.

Figure 4-c: Sheetsu Default Table Settings

In my case, the only thing I have done is renamed the table from Example Table to Docs, by

changing the value of the Name field.

 88

Before we can start using Sheetsu within our code, we need to go to the root folder project and

install Sheetsu from the command line as: npm install sheetsu-node --save.

Dynamic data loading

Now that we are set up and ready to work with Sheetsu, the next thing we need to do is to add it

to App.vue, make some modifications to the existing code, and load the items array from the

Docs table using Sheetsu.

Listing 4-a: Updated App.vue
<template>

 <div id="app">

 <v-app>

 <Doc ref="modal" :item="newdoc" :items="items" />

 <v-layout row>

 <v-flex xs12 sm6 offset-sm3>

 <v-card>

 <Docs :items="items"/>

 <v-card-text tyle="height: 100px; position: relative">

 <v-btn @click="openModal"

 big

 color="pink"

 dark

 absolute

 bottom

 right

 fab

 >

 <v-icon>add</v-icon>

 </v-btn>

 </v-card-text>

 </v-card>

 </v-flex>

 </v-layout>

 </v-app>

 </div>

</template>

<script>

import Docs from './components/Docs';

import Doc from './components/Doc';

import sheetsu from 'sheetsu-node';

 89

let db = sheetsu({

 address: "https://sheetsu.com/apis/v1.0su/..."}); // put your URL here

export default {

 name: 'app',

 components: {

 Docs, Doc

 },

 created () {

 this.getdocs();

 },

 methods: {

 openModal() {

 this.$refs.modal.show();

 },

 getdocs() {

 db.read().then((data) => {

 this.items = JSON.parse(data);

 });

 }

 },

 data: () => {

 return {

 newdoc: {

 id: -1,

 name: "New Document",

 exp: "",

 alert1year: true,

 alert6months: true,

 alert3months: true,

 alert1month: true

 },

 items: []

 }

 }

}

</script>

<style>

</style>

I’ve highlighted the changes to App.vue in bold. The first change made to the code is to import

a reference to the Sheetsu module, using an import sheetsu from 'sheetsu-node';

statement.

 90

Next, we need to instantiate the Sheetsu object by passing the API address of the Google

spreadsheet we created. You can do this from the Sheetsu dashboard by scrolling down to the

bottom of the page and clicking Go to your API—as we can see in the following figure.

Figure 4-d: The “Go to your API” Button (Sheetsu Dashboard: bottom of the page)

When you click this button, you will be taken to a webpage that displays the JSON

representation of data existing on the Google spreadsheet—which looks something like this.

Figure 4-e: The JSON Sheetsu (Google Spreadsheet) Results

The URL of this JSON result is used when creating the Sheetsu instance using the following line

of code: let db = sheetsu({address: "https://sheetsu.com/apis/v1.0su/..."});.

Next, we can see that the list of documents gets loaded from the Google spreadsheet when the

component’s created event is executed by calling the getdocs method—which happens when

App.vue is rendered on the screen.

created () {
 this.getdocs();
}

The getdocs method is responsible for executing the read method from the Sheetsu instance,

retrieving those values and assigning them to the items array as JSON results—as seen in

Figure 4-e.

getdocs() {
 db.read().then((data) => {
 this.items = JSON.parse(data);
 });
}

 91

The result needs to be converted from a string JSON representation to its JSON object

equivalent—which is why JSON.parse is invoked.

For this to fully work, there’s one final change required: The default data that was assigned to

the items array needs to be cleared, which is why it is initialized as items: [].

If you now run the application, you should see that the data is loaded dynamically.

Deleting documents

Now that we can load the documents dynamically from the Google spreadsheet table, the next
thing we need to do is to be able to delete a document from the database when clicking the
delete_forever icon. The following listing shows the updated Item.vue code that does this.

Listing 4-b: Updated Item.vue
<template>

 <div>

 <Doc ref="modal" :item="item" :items="items" />

 <v-list-tile avatar ripple>

 <v-btn @click="removeItem" flat icon color="red lighten-2">

 <v-icon>delete_forever</v-icon>

 </v-btn>

 <v-btn @click="openModal" flat icon color="green lighten-2">

 <v-icon>edit</v-icon>

 </v-btn>

 <v-list-tile-content>

 <v-list-tile-title class="text--primary">

 {{ item.name }}

 </v-list-tile-title>

 <v-list-tile-sub-title>

 {{ item.exp }}

 </v-list-tile-sub-title>

 <v-list-tile-sub-title>

 {{daysLeft(item.exp)}}

 </v-list-tile-sub-title>

 </v-list-tile-content>

 <v-list-tile-action>

 <v-list-tile-action-text>

 {{ item.id }}

 </v-list-tile-action-text>

 <v-icon v-if="!hasExpired(item.exp)"

 color="green lighten-1">done_outline</v-icon>

 <v-icon v-else color="red lighten-1">warning</v-icon>

 </v-list-tile-action>

 92

 </v-list-tile>

 <v-divider v-if="item.id + 1 < lgth"

 :key="`divider-${item.id}`"></v-divider>

 </div>

</template>

<script>

import Doc from './Doc';

import moment from 'moment';

import sheetsu from 'sheetsu-node';

let db = sheetsu({

 address: "https://sheetsu.com/apis/v1.0su/..."}); // put your URL here

export default {

 name: "Item",

 components: {

 Doc

 },

 props: ["item", "lgth", "items"],

 methods: {

 openModal() {

 this.$refs.modal.show();

 },
 removeItem() {
 db.delete(

 "id",

 this.item.id

).then(() => {

 let idx = this.items.indexOf(this.item);

 if (idx > -1) {

 this.items.splice(idx, 1);

 }

 });

 },

 daysLeft(dt) {

 let ends = moment(dt);

 let starts = moment(Date.now());

 let years = ends.diff(starts, "year");

 starts.add(years, "years");

 let months = ends.diff(starts, "months");

 starts.add(months, "months");

 let days = ends.diff(starts, "days");

 let rs = years + " years " + months + " months " +

 93

 days + " days";

 return this.hasExpired(dt) ?

 "Expired " + rs.replace(/-/g, '') + " ago"

 : "Left: " + rs;

 },

 hasExpired(dt) {

 return (Date.parse(dt) <= Date.now()) ? true : false;

 }

 }

}

</script>

<style scoped>

</style>

There are only three changes to the code: the first is the import statement that imports the

sheetsu module, the second is the creation of the sheetsu instance, and the third is the

change to the removeItem method that performs the deletion operation.

The logic within the removeItem module is quite simple—it basically calls the delete method

from the db instance that points to the Google spreadsheet table.

removeItem() {
 db.delete(
 "id",
 this.item.id
).then(() => {
 let idx = this.items.indexOf(this.item);
 if (idx > -1) {
 this.items.splice(idx, 1); // remove 1 item at [idx]
 }
 });
}

The way the delete method works, is that if we pass it the name of the column we want to

focus on—the id and the value which we want to remove, in this case this.item.id—then the

rows that match that search criteria will be deleted.

After the document is deleted, then item gets removed from the items array, which is what

then(() => {} ...); does.

Because we are using Sheetsu’s free plan, you will notice that when you click on the

delete_forever icon, the document will not be deleted on the Google spreadsheet. This is

because the free version doesn’t allow for items to be deleted. If you open your browser’s

developer tools, you should see the following message.

 94

Figure 4-f: Developer tools (DELETE message): Sheetsu

Notice that message returned by the Sheetsu API is quite clear—a 402 (Payment Required)

response is returned. If you would like to use a paid Sheetsu plan, feel free to give it a try.

This validates that our code works, but the delete operation was not carried out on the Google

spreadsheet due to the paywall option; however, you will notice that the document has been

removed from the list of documents on the UI.

Saving new or existing documents

There’s one final thing to do before we have a finished application—we need to be able to save

new or existing documents. To achieve this, we need to make some changes to Doc.vue as

follows.

Listing 4-c: Updated Doc.vue
<template>

 <div>

 <v-dialog v-model="showModal"

 fullscreen

 hide-overlay

 transition="dialog-bottom-transition"

 scrollable

 >

 <v-card tile>

 <v-toolbar color="blue" dark>

 <v-btn icon dark @click="hide">

 <v-icon>close</v-icon>

 </v-btn>

 <v-toolbar-title>{{item.name}}</v-toolbar-title>

 <v-spacer></v-spacer>

 <v-toolbar-items>

 <v-btn dark flat @click="save">Save</v-btn>

 </v-toolbar-items>

 </v-toolbar>

 <v-card-text>

 <v-list three-line subheader>

 <v-list-tile avatar>

 <v-list-tile-content>

 <v-list-tile-title>

 Document Name

 95

 </v-list-tile-title>

 <v-list-tile-sub-title></v-list-tile-sub-title>

 <v-text-field

 ref="name"

 v-model="item.name"

 :rules="[

 () => !!item.name || 'Required field']"

 required

 >

 </v-text-field>

 </v-list-tile-content>

 </v-list-tile>

 <v-list-tile avatar>

 <v-list-tile-content>

 <v-list-tile-title>

 Expiry Date

 </v-list-tile-title>

 <v-list-tile-sub-title></v-list-tile-sub-title>

 <v-menu

 ref="menu"

 v-model="menu"

 :close-on-content-click="false"

 :nudge-right="40"

 :return-value.sync="date"

 lazy

 transition="scale-transition"

 offset-y

 full-width

 min-width="290px"

 >

 <template v-slot:activator="{ on }">

 <v-text-field

 v-model="date"

 prepend-icon="event"

 readonly

 v-on="on"

 ></v-text-field>

 </template>

 <v-date-picker

 v-model="date"

 :min=today

 max="2099-12-31"

 no-title scrollable>

 <v-spacer></v-spacer>

 96

 <v-btn flat color="primary"

 @click="menu = false">Cancel</v-btn>

 <v-btn flat color="primary"

 @click="$refs.menu.save(date)">OK</v-btn>

 </v-date-picker>

 </v-menu>

 </v-list-tile-content>

 </v-list-tile>

 </v-list>

 <v-divider></v-divider>

 <v-list four-line subheader>

 <v-list-tile avatar>

 <v-list-tile-action>

 <v-switch

 v-model="item.alert1year"

 :label="`Alert @ 1.5 & 1 year(s)`"

 ></v-switch>

 </v-list-tile-action>

 </v-list-tile>

 <v-list-tile avatar>

 <v-list-tile-action>

 <v-switch

 v-model="item.alert6months"

 :label="`Alert @ 6 months`"

 ></v-switch>

 </v-list-tile-action>

 </v-list-tile>

 <v-list-tile avatar>

 <v-list-tile-action>

 <v-switch

 v-model="item.alert3months"

 :label="`Alert @ 3 months`"

 ></v-switch>

 </v-list-tile-action>

 </v-list-tile>

 <v-list-tile avatar>

 <v-list-tile-action>

 <v-switch

 v-model="item.alert1month"

 :label="`Alert @ 1 month or less`"

 ></v-switch>

 </v-list-tile-action>

 </v-list-tile>

 </v-list>

 97

 </v-card-text>

 <div style="flex: 1 1 auto;"></div>

 </v-card>

 </v-dialog>

 </div>

</template>

<script>

import sheetsu from 'sheetsu-node';

let db = sheetsu({

 address: "https://sheetsu.com/apis/v1.0su/..."});

export default {

 name: "Doc",

 props: ["item", "items"],

 data: () => {

 return {

 name: "",

 date: new Date().toISOString().substr(0, 10),

 today: new Date().toISOString().substr(0, 10),

 menu: false,

 showModal: false

 }

 },

 methods: {

 show() {

 this.showModal = true;

 if (this.item.id > -1) {

 this.date = this.item.exp;

 }

 },

 hide() {

 this.showModal = false;

 },

 save() {

 if (this.item.id == -1) {

 this.adddoc();

 }

 else {

 this.editdoc();

 }

 this.showModal = false;

 98

 },

 adddoc() {

 let doc = {

 id: this.items.length + 1,

 name: this.item.name,

 exp: this.date,

 alert1year: this.item.alert1year,

 alert6months: this.item.alert6months,

 alert3months: this.item.alert3months,

 alert1month: this.item.alert1month

 };

 db.create(doc).then(() => {

 this.items.push(doc);

 });

 },

 editdoc() {

 this.item.exp = this.date;

 let doc = {

 id: this.item.id,

 name: this.item.name,

 exp: this.date,

 alert1year: this.item.alert1year,

 alert6months: this.item.alert6months,

 alert3months: this.item.alert3months,

 alert1month: this.item.alert1month };

 db.update(

 "id",

 this.item.id,

 doc).then(() => {

 let idx = this.items.findIndex

 ((itm => itm.id == this.item.id));

 this.items[idx] = doc;

 });

 }

 }

 }

</script>

<style scoped>

</style>

We can see that the first two changes highlighted in bold have to do with importing the Sheetsu

module and instantiating it.

 99

Next, within the Save method, we check if an item is new or if it is already existing. If it is a new

item (this.item.id == -1), then the adddoc method is called. If it is an existing item, then

the editdoc method is called.

Let’s now explore in detail the adddoc method.

adddoc() {
 let doc = {
 id: this.items.length + 1,
 name: this.item.name,
 exp: this.date,
 alert1year: this.item.alert1year,
 alert6months: this.item.alert6months,
 alert3months: this.item.alert3months,
 alert1month: this.item.alert1month
 };
 db.create(doc).then(() => {
 this.items.push(doc);
 });

}

We begin the adddoc method by creating a doc object to which we assign the values of each of

the new document’s properties.

This doc object is then committed to the Google spreadsheet table (through Sheetsu) by calling

the db.create method. The doc object is also added to the items array, which represents the

list of documents.

Now, let’s explore the editdoc function.

editdoc() {
 this.item.exp = this.date;
 let doc = {
 id: this.item.id,
 name: this.item.name,
 exp: this.date,
 alert1year: this.item.alert1year,
 alert6months: this.item.alert6months,
 alert3months: this.item.alert3months,
 alert1month: this.item.alert1month };
 db.update("id", this.item.id, doc).then(() => {
 let idx = this.items.findIndex
 ((itm => itm.id == this.item.id));
 this.items[idx] = doc;
 });
}

The first thing we do is assign the date value to item.exp. Then the doc object is created by

assigning the values of the active document to their respective doc properties.

 100

The update to the Google Spreadsheet is done by calling db.update, by looking for the id

column that matches the value of the item.id.

The doc object is passed to db.update, which represents the document to be updated on the

Google Spreadsheet.

Once the document has been updated, the document (item) is found within the list of

documents (items array) using the findIndex method, and then the document is updated

within the items array by calling this.items[idx] = doc;.

If you run the application and attempt to add, edit, or delete a document, you will notice that all

these operations return a 402 (Payment Required) response from the Sheetsu service.

This means that all code for adding, editing, and deleting a document work. However, to enable

that functionality on the Google spreadsheet table and reflect those changes, you’ll have to

upgrade your Sheetsu plan.

Awesome—by using Google Sheets as a data source, we now have a small and fully working

Vue application that works like the application we built in Flutter Succinctly.

Figure 4-g: The Finished Vue App

Project source code

You can download the complete source code files for the demo project built throughout this

book from here.

Node modules and dependencies are not included as part of the code package, so you’ll need

to run the npm install command from the project root folder (where package.json resides) to

download and install all the modules and dependencies required.

https://1drv.ms/u/s!AgBX7xIEoO8BkZYTtjtiSnYHSdj5Iw?e=YAhqSp

 101

Closing comments

We’ve covered quite a bit of ground. We’ve explored the essentials of Vue and how to quickly

build an application with this amazing framework.

However, there’s quite a lot to learn about Vue. The goal of this book was to get you started and

acquainted with the fundamentals and foundation of the framework, and help you build

something relatively easily, without having to first become an expert on the framework.

Going forward, there are a few things to keep exploring about the framework, such as routing

(using Vue Router), state management (using Vuex), and server-side rendering (using Nuxt.js).

Vue is more than a framework—it’s a mature and vibrant ecosystem that keeps growing and

welcomes new adopters and fans every day.

I invite you to take this application a step further and add extra functionality, such as

authentication and possibly transforming it into a single-page application. Go beyond the

Sheetsu (Google Sheets) approach and replace it with a different backend, such as Firebase.

The possibilities with Vue are endless, and I’m excited to hear about what you build going

forward. Thank you for reading, and goodbye until next time!

https://router.vuejs.org/
https://vuex.vuejs.org/guide/
https://nuxtjs.org/
https://firebase.google.com/

	Table of Contents
	The Story behind the Succinctly Series of Books
	About the Author
	Acknowledgements
	Introduction
	Chapter 1 Setup
	Project overview
	Installation
	Creating an app (CLI)
	Creating an app (Vue UI)
	Project dashboard: Vue Project Manager
	Summary

	Chapter 2 App Basics
	Quick intro
	Editor
	Default project structure
	Index.html, main.js, and App.vue
	The HelloWorld component
	App component structure
	Vue’s data within components
	Docs component
	Vue DevTools
	Getting the data into the Docs component
	Summary

	Chapter 3 Expanding the App: UI
	Quick intro
	Item.vue
	Vuetify
	Styling App.vue
	Styling Docs.vue
	Styling Item.vue
	Creating Doc.vue
	Adapting App.vue for Doc.vue
	Adapting Docs.vue for Doc.vue
	Adapting Item.vue for Doc.vue
	Adjustments to Doc.vue
	Summary

	Chapter 4 Finalizing the App: Database
	Quick intro
	Sheetsu dashboard
	Dynamic data loading
	Deleting documents
	Saving new or existing documents
	Project source code
	Closing comments

